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Abstract

Magnetic confinement fusion is an advanced technology under inves-
tigation as a potential low cost source of energy. Progress in this area
depends upon the ability of researchers to understand the magnetic field
containing the fusion plasma. In previous work done by Sanderson, Chen,
Trichoche, et al [1], topological features of the toroidal magnetic field are
identified by analyzing the Poincaré map of sampled fieldlines. In this
work, we take a look at a particular class of periodic fieldlines that are
characteristic of rational surfaces. As a result of their unique periodic-
ity and unlike their quasi-periodic counterparts, they do not spread out
across the magnetic surface. Therefore, the number of data points on
the cross-sectional curve in the Poincaré section is limited to the toroidal
winding number of the surface. The result is a piecewise linear approxi-
mation of the surface the degree of which, unlike irrational surfaces, can
not be improved by increasing the number of puncture points. Because
of the scarcity of information from a single fieldline on rational surfaces
(esp. low order), it would benefit researchers to be able to increase the
number of fieldlines on the surface to more accurately represent the sur-
face profile in the Poincaré section. In order to do this, a strategy based
on seeding fieldlines between puncture points on a rational surface and
minimizing their winding distances using a known numerical search tech-
nique has been implemented and deployed in C++ as a plugin to the VisIt
visualization toolset [2]. A complete discussion of this strategy and the
results are contained within this paper.
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Figure 1: Left: A profile of the DIII-D Tokomak and a single quasi-periodic magnetic field, shown
as red curves. Right: A visualization of a magnetic confinement fusion simulation showing an
island chain surface in green. Both: Images borrowed with permission [1]

1 Introduction

Researchers wanting to harness the power of nuclear fusion must somehow con-
fine the hot plasma containing the reaction. One of the most promising tech-
niques for stabilizing the fusion plasma is a toroidal magnetic field inside a device
known as a tokomak reactor (see Figure 1). In order to succeed, the magnetic
field must realize a condition such that its fieldlines travel in a helical pattern
around the torus. Researchers study the results of numerical simulations as
a way to designing better reactors and must therefore characterize the orbits
of the fieldlines. A technique for analyzing the magnetic fields numerically, as
described by Sanderson, et al [1] involves the use of a Poincaré map as a way
of reducing the Hamiltonian dimensionality of the simulation. A collection of
points formed from a certain number of intersections of the fieldlines with a
plane perpendicular to the toroidal axis gives a complete representation of the
toroidal magnetic field, and an analysis of the puncture points yields details
about the characteristics of the orbits. Periodic fieldlines of closed finite length
are found on rational surfaces (see Figure 3), while quasi-periodic fieldlines (see
Figure 2) will travel infinitely over irrational surfaces.

Following on the work of Sanderson, et al [1], this work takes a deeper look
at those fieldlines following their characterization through analysis as having
a rational safety factor– indicative of a periodic fieldline on a rational surface.
Specifically, the precise contours and shape of low order rational surfaces are not
as easily known as that of their irrational counterparts. This is a consequence of
the closed fieldlines of a rational surface that due to their nature don’t spread
out across the surface as they wind around the toroidal axis. Contrariwise,
fieldlines on an irrational surface puncture the toroidal plane in a progressive
manner, intersecting the plane at an offset from the previous intersection of
the same winding group. This does not hold for rational surfaces, where each
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intersection of the same toroidal winding number occurs in the same place as
the last within precision (see Figure 5), yielding no new information. However,
more information is desired since rational surfaces tend to break up first into
island chains as a response to perturbations in the field, overall increasing the
chaos and decreasing the stability of the confinement.

Figure 2: The quasi-periodic
fieldlines typical of an irrational
surface. [1]

Figure 3: A rational surface
with a periodic fieldline. [1]

Figure 4: An island chain. [1]

In the interest of filling in the gaps between the otherwise somewhat sparse
Poincaré punctures from a rational fieldline, a numerical search based on a well
known [3] minimization technique has been designed to search out points lying
on the surface between those already discovered. The idea is to generate enough
new points on the surface to compensate for the fact the original points didn’t
spread out and reveal the surface through their own natural drift (see Figure
6).

This concept has been deployed as an extension to an existing library of
mostly C++ code which can be leveraged inside a number of visualization pack-
ages such as VisIt and SCIRun. The main algorithm starts with the puncture
points of a rational surface, and based on the euclidean spacing of those field
lines in a cross sectional plane of the torus, new fieldlines are spawned in a pat-
tern strategically designed to leverage the monotonicity of the local vector field
data to locate and draw new points lying directly on the surface. The numerical
search is based on a simple bracketing and minimization routine [3].

The resultant rendering of the surface profile more precisely represents the
rational surface and can provide an arbitrary level of detail depending on the
number and spacing of the initial seeds.

2 Background

2.1 Vector Fields

Toroidal magnetic fields are described mathematically as divergence-free pseudo-
vector fields. A vector field V on a manifold M expressible as an ordinary
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Figure 5: A Poincaré plot of a rational fieldline with a close-up of a puncture point composed of
multiple intersections of the same toroidal winding group– the circle indicates the limit on precision.
Notice that while the groups of points are not drawn connected, they nevertheless form a piecewise
linear approximation of the surface profile.

differential equation dx
dt = V (x) has a set of solutions that produce a flow over

M, or a continuous function ϕ(0, x) : R×M→M such that ϕ(0, x) = x, ∀x ∈
M and dϕ

dt |t,x = V(ϕ(t, x)),∀t ∈ R. A fieldline that passes through a point
x0 ∈ M is a curve on M, since x(·) ≡ ϕ(·, x0). A fieldline through x0 ∈ M
is on a periodic orbit if x(T ) = x0 for some T ∈ R, T 6= 0. A set S ∈ M
is invariant if the flow returns it to itself. The periodic orbits we look at are
invariant sets which can be analyzed using a Poincaré map.

If we have an orbit Γ of ϕ in an n dimensional manifold M, and we let T
be an n − 1 dimensional cross section such that ϕ is everywhere transverse to
T , then T is called a Poincaré section. A puncture point on a Poincaré cross
section is defined as an intersection of Γ with T . This point is described by
pi ∈ T ∩ Γ where i ∈ N denotes the intersection ordering.

2.2 Poincaré map

A Poincaré map in T is defined as P : R × T → T , leading from puncture
point pi to pi+1 along the orbit Γ where pi, pi+1 ∈ T ∩ Γ. In other words,
pi+1 = P (pi) = ϕ(τ, pi) where τ ∈ R and τ > 0 is the time for Γ to travel from
pi to pi+1. The collection of points generated in T is known as the Poincaré
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plot of Γ. A Poincaré map is a well known technique for researching regions
near periodic solutions to recurrent flows in dynamic systems [4].

2.3 Toroidal Magnetic Fields

Magnetic fieldlines traversing helically inside a toroidal containment device will
wind around both the toroidal (major) axis and the poloidal (minor) axes of
the torus. The ratio of the number of times the fieldline circumnavigates the
toroidal axis for each rotation around the poloidal axis is known as the fieldline’s
safety factor or q. The safety factor is related to the stability of the confined
plasma. It is defined by

q = lim
nT→+∞

nT
#θ(nT )

(1)

where nT is the toroidal winding number, or the number of times a fieldline Γ
intersects a poloidal cross section T and #θ(nT ) is the poloidal winding number,
or the number of times Γ intersections the toroidal cross section at z = 0. The
poloidal winding number is #θ(nT ) when Γ crosses the poloidal plane nT times.
Unless the fieldline is chaotic, the limit defined above exists.

An irrational surface produces quasi-periodic fieldlines (Figure 2) which
spread across the surface resulting in an irrational q. These produce two dif-
ferent topologies in a Poincaré section, either a single closed curve or multiple
closed curves. Single closed curves indicate a magnetic flux surface while mul-
tiple closed curves indicate a magnetic island chain (Figure 4) which usually
results from the breakup of a rational surface. The number of islands matches
nT .

A rational surface produces fieldlines (Figure 3) which do not spread out over
the surface, but which rather wind back onto themselves after the number of
toroidal windings equals nT . These fieldlines are indicated by a rational q. Aside
from being the topic of this work, the importance of rational surfaces lies in the
susceptibility of those fieldlines with low-order safety factors to breaking up into
island chains in response to perturbations to the magnetic field, disrupting the
confinement stability.

2.4 Error and Stability

A fieldline Γ is an approximated solution to the ordinary differential equation
dx
dt = f(x) with x(0) = s, s ∈ R. It is assumed fx = ∂f

∂x is continuous and satisfies
fx(t, x) ≤ λ for all t ∈ [0, T ] and all x ∈ R. Numerical integration techniques
such as the Adams-Bashforth multi-step method used to approximate values
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x(t) at time t necessarily introduce local truncation errors at each iteration
which accumulate into global truncation error.

The formula for a k-step linear multi-step method is given by [5] as akxn +
ak−1xn−1 + · · ·+ a1xn−k−1 + a0xn−k = h[bkfn + bk−1fn−1 + · · ·+ b1fn−k+1 +
b0fn−k] which can also be written as xn = − 1

ak
(ak−1xn−1 + · · · + a1nn−k−1 +

a0xn−k) + h
ak

[bkfn + bk−1fn−1 + · · ·+ b1fn−k+1 + b0fn−k]. This equation com-
putes xn from the k preceding values, xn−k, xn−k+1, · · · , xn−1. Convergence
of a linear multi-step method in a region [t0, t1] requires that lim

h→0
xh(t) =

x(t), t ∈ [t0, t1]. Here, xh(t) indicates the numerical solution computed at
time t with a step size of h while x(t) indicates the exact solution. Setting
bk to 0 makes the method explicit, since fn = f(tn, xn). The order of the
method corresponds with the number of terms in the Taylor series expansion
of the solution simulated by the method. To illustrate this better, rewrite

the equation above as a linear functional L[x] =

k∑
j=0

[ajx(jh) − hbjf(jh)] =

k∑
j=0

[ajx(jh) − hbjx
′(jh)]. Write x and x′ as x(jh) =

∞∑
i=0

(jh)i

i!
x(i)(0) and

x′(jh) =

∞∑
i=0

(jh)i

i!
x(i+1)(0) respectively. Apply these results to the linear

functional to get L[x] =

k∑
j=0

[
aj

∞∑
i=0

(jh)i

i!
x(i)(0)− hbj

∞∑
i=0

(jh)i

i!
x(i+1)(0)

]
. Col-

lect terms proportional to x(0), x′(0), · · · to get L[x] = d0x(0) + d1hx
′(0) +

d2h
2x′′(0) + · · · . The coefficients are d0 =

k∑
i=0

ai, d1 =

k∑
i=0

(iai − bi), d2 =

k∑
i=0

(
1

2
i2ai − ibi

)
, · · · , dj =

k∑
i=0

(
ij

j!
ai −

ij−1

(j − 1)!
bj

)
. As described in [5], 0 =

d0 = d1 = · · · = dm. The order of the method is the natural number m such
that 0 = d0 = d1 = · · · = dm 6= dm+1.

In order to define the local truncation error (see [6, P 302-307]), write the

exact solution as x(tj+1) = x(tj) +

∫ tj+1

tj

x′(t) dt. If x ∈ Cm then by Taylor’s

Theorem we can write x′(t) = P (t) + R(t) where R(t) = x(m+1)(ξ)
(m)! w(t) and

P (t) is an (m − 1)-degree polynomial defined as Pm−1(t) = Lm−1(t)x′(tj) +
· · · + L0(t)x′(tj+1−m) for m nodes tj+1−m, · · · , tj on [tj , tj+1] where Lk(t) =

m−1∏
i=0,i6=k

(t− tj+1−m+1)

m−1∏
i=0,i6=k

(tj+1−m+1 − tj+1−m+i)

for k = 0, · · · ,m−1 and w(t) =

m−1∏
i=0

(t−tj+1−m+1).
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Then

∫ tj+1

tj

x′(t)dt =

∫ tj+1

tj

Pm−1(t)dt+Ej where Ej =

∫ tj+1

tj

x(m+1)(ξ(t))

m!
w(t)dt.

Using the substitutions t = hs+ tj and tk = a+ kh with the Mean Value The-

orem, Ej =
x(m+1)(ξj)

m!

∫ tj+1

tj

w(t)dt =
hm+1x(m+1)(ξj)

m!

∫ 1

0

s(s + 1) · · · (s + m −

1)ds. Express the local truncation error as

τj+1(h) = 1
h

(
x(tj+1)− x(tj)−

∫ tj+1

tj

Pm−1(t)dt

)

= 1
h

(∫ tj+1

tj

x′(t)dt−
∫ tj+1

tj

Pm−1(t)dt

)
=

Ej
h =

hmx(m+1)(ξj)
m!

∫ 1

0

s(s+ 1) · · · (s+m− 1)ds = O(hm).

Looking at the result of a single integration step and assuming no error
introduced from previous steps, the error is ε1 = δ where δ is the local truncation
error of an iteration. In the case of the explicit Adams-Bashforth methods, this
error is proportional to hm where m is the order of the method. The following
iteration introduces its own error and when this is accumulated with the error
in the previous step, the total error is ε2 = δ + eλhε1 = δ + eλhδ. Notice the
errors are not simply summed, as the error in the current step critically depends
on the error in the previous. The third iteration has error ε3 = δ + eλhε2 =

δ+eλh(δ+δeλh). The relationship is defined by εn = δ

n−1∑
i=0

eiλh. This represents

an upper bound on the global truncation error, such that the error εn does not

exceed δ e
λtn−1
eλh−1

. If the local truncation error is O(hm) then the global truncation

error is O(hm−1), since eλtn−1
eλh−1

= eλtn−1
(1+λh+ 1

2 (λh)2+··· )−1
= 1

λh ( e
λtn−1
1+ 1

2

(λh)+ · · · ) ≈
O(h−1). This leads to εn ≈ O(hm) · O(h−1) = O(hm−1).

The global truncation error, given by the difference xi − x(ti) puts a limit
on the accuracy of a puncture point generated by the intersection of Γ with T .
In other words, a puncture point on T has accuracy proportional to a power
of the step size h as described above. It is worth noting at this point that the
strategy outlined in later sections depends directly on the size of the area around
each puncture point which ultimately in turn depends on the step size used to
calculate the fieldline.

To describe the stability of the method, differentiate dx
dt = f(x) with respect

to s, x(0) = s giving ∂
∂s

∂x
∂t = ∂

∂t
∂x
∂s = ∂f

∂x
∂x
∂s and ∂x

∂s (0, s) = 1. For simplicity,

set u = ∂x
∂s . Then u′ = fx · u and u(0) = 1. If α(t) = λ − fx(t), then α(t) is a

positive function leading to u′

u = fx = λ− α(t) and d
dt (ln |u|) ≤ λ− α(t). Now

integrate between 0 and t to get ln |u(t)|− ln |u(0)| = λt−
∫ t

0

α(t) dt and finally

ln |u(t)| < λt or |u(t)| < eλt.
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Figure 6: Left: An example of a rational surface profile section before additional points on the
surface were found. Center: The same section, after adding additional points calculated using
the method described. Right: A quasi-periodic surface with similar winding group spacing. Color
indicates the ordering within a winding group. Notice that successive points in the same winding
group ‘fill in’ the gaps.

This leads to the conclusion that the fieldlines solved with initial values s and
s+δ differ at time t by at most |δ|eλt since by the Mean Value Theorem, we get
|x(t, s)− x(t, s+ δ)| = | ddsx(t+ θδ)||δ| for some θ ∈ [0, 1] and | ddsx(t+ θδ)||δ| ≡
u(t+ θδ)|δ| < |δ|eλt.

3 Strategy

3.1 Overview

The collection of puncture points made by intersecting a rational fieldline with
a Poincaré section of the toroidal magnetic field is used to strategically generate
new seed points such that the puncture points of the resulting ensemble of
rational fieldlines yield a more complete profile of the rational surface. (See
Figure 6).

The euclidean distance between successive intersections is used as the mini-
mization value, as fieldlines lying just near a rational surface will have vanish-
ingly smaller distances between a given intersection and the intersection after a
toroidal winding number of toroidal windings until the fieldline is right on the
surface. The points that have minimized to the surface are drawn in sequence.

The strategy starts by numerically selecting two adjacent puncture points
P(max) and P((max+wgo) mod nT ) made by fieldlines lying on the rational surface
intersecting the toroidal plane. These points bound a section of the rational
which lies adjacent to the puncture point Pmax where subscript denotes in-
tersection ordering. The winding group offset of the orbit is signified by wgo
which is a useful factor derived from the Blankenship property (see [1, P 5-6])
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Figure 7: Left: A section of a rational surface showing three fieldlines with their respective three
points emphasized which, for this curve, turn out to be its P((max−wgo) mod nT ), P(max) and
P((max+wgo) mod nT ). All three points are used in determining where to place seeds between just
two of them. Right: The same three points zoomed in somewhat, shown with the newly seeded
fieldlines and their respective punctures. This is an example of a best case– the seeds already lie on
the surface and the search is complete. That is a coincidence, however, as the position of the points
is derived from an arc of a circle built to contain the two bounding rational points plus a third,
P((max−wgo) mod nT ), in both of these images it is the topmost point. When the fieldlines of these
new seeds are integrated, puncture points from later winding groups fill in all the gaps between
each adjacent pair of the other rational points. Here, P((max+wgo) mod nT ) and P((max) mod nT )

are slightly emphasized to show that they border the new seeds.
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that gives the number of toroidal windings between winding groups which occur
physically adjacent to each other but are not necessarily adjacent in the winding
order. Finally, max is the index of the puncture point which forms the largest
angle with itself and its two neighbors P((i−wgo) mod nT ) and P((i+wgo) mod nT )

∀i ∈ I : 0 ≤ i < nT (See Figure 7). If a sufficient number of new points are
inserted on the rational surface evenly between these two points, the result is a
smoother approximation of the surface profile. However, if the precise location
of the rational surface between these two points were known, then we’d already
have those data and a search would be unnecessary. Therefore, an educated
guess is made as a starting point.

3.2 Seeding & Bracketing

An arc of the circle connecting the points P((max−wgo) mod nT ), P(max) and
P((max+wgo) mod nT ) is used to place new seed points P ∗A,0, P ∗A,1, P ∗A,2, . . . ,
P ∗A,N for the simulation, where N + 1 is the number of seeds points desired
and A is a label indicating the order of the point for bracketing (See Figure
7). It is assumed that fieldlines generated from points lying on this arc are
nearer to the rational surface than those generated from points lying on a chord
between existing rational puncture points. These new seeds are in many cases
an excellent first approximation, exceeding our tolerance requirement right away
and are accepted as lying on the surface. This is frequently the case with higher
order rational surfaces, as the approximation is already quite good compared to
low order surfaces. Nevertheless, the chord between the two rational puncture
points bounding our placement of new seeds is used to generate the second of
three points needed for the rest of the procedure, P ∗C,0, P ∗C,1, P ∗C,2, . . . , P ∗C,N . In
particular, these points are generated on the intersection of the chord between
P(max) and P((max+wgo) mod nT ) with a line formed perpendicular to it passing
through P ∗i , 0 ≤ i < N + 1. The third points, P ∗B,0, P ∗B,1, P ∗B,2, . . . , P ∗B,N , are
chosen as the midpoint between P ∗A,i and P ∗C,i ∀i ∈ I : 0 ≤ i < N + 1 (See
Figure 8). From here on out, i is used as a subscript to indicate for each point,
in order, corresponding to the ith seed, ∀i ∈ I : 0 ≤ i < N + 1.

With a set of three new points for each additional point we want to have
minimized down to the rational surface, we are ready to establish whether the
surface is actually contained somewhere between them. This is done by evalu-
ating the minimization parameter for each new point and comparing them. We
shall identify this parameter as dX ,i for the distance between the corresponding
intersection of ith seed in the X th minimization stage, and the intersection from
that same curve nT toroidal windings later.

In the first stage, we are bracketing the minimum. This means that we
search for a set of three points such that dB,i < dA,i and dB,i < dC,i. When this
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Figure 8: A closely zoomed section of a rational surface shown with three points, from left to right:
P∗C,i, P

∗
B,i and P∗A,i. These points are in the first iteration of bracketing the minimum, as such

P∗A,i here is the seed planted, or the best initial guess from the previous stage. Notice its close
proximity to the surface, as well as the spacing between its winding groups. The actual ratio of the
chords between the positions of the bracketing points in the first iteration doesn’t matter, as the
algorithm quickly adjusts it to the golden ratio.

condition is met, the rational surface must lie between P ∗A,i and P ∗C,i, as its d
value would be precisely zero (or within precision) if the point lies directly on
it. As there cannot be negative distances a d value within error of zero on the
rational surface is the minimum, and the target of our search (See Figure 9). In
the end, we just need a point with a minimization value less than that of both
its neighbors to be able to define the neighbors as the bounds or bracket on
the minimum. Often, our minimum is bracketed right away and we can move
directly into the next phase of the search.

When it is not and we must extend our search, dB,i & dA,i are evaluated. If
dB,i > dA,i, P

∗
A,i and P ∗B,i must be renamed and reordered such that dB,i < dA,i.

Once this is done, if the minimum is still not bracketed, the search continues by
choosing a new P ∗C,i until either the minimum has been bracketed or no minimum
can found. A new P ∗∗C,i to replace the last one is calculated by extending the
chord from P ∗B,i to the old P ∗C,i by a fixed ratio; in this case we use the golden
ratio [3, P 491]. Finally, P ∗∗C,i is relabeled as P ∗C,i, completing one iteration of
the bracketing loop. Notice that depending on whether P ∗A,i and P ∗B,N must
be swapped, the search may proceed in opposite directions at different points
along the chord between P(max) and P((max+wgo) mod nT ).
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Figure 9: This image shows a bracketed rational surface as a blue line. The colored lines to the left
of the rational show curves with progressively smaller gaps between puncture points of the same
toroidal winding group, the basis for the minimization. The color indicates winding order. The
line to the right of the rational is there to indicate the reversal of the direction of the winding,
characteristic of regions on either side of a rational surface. Three of the fieldlines were seeded at
points used for the first iteration of bracketing.

3.3 Minimization

When the rational surface has been bracketed, the next phase of the search
begins [3, P 495-496]. Points P ∗A,i and P ∗C,i are relabeled P ∗X0,i and P ∗X3,i,
respectively. Point P ∗B,i is relabeled P ∗X2,i if the length of the vector VAB from
P ∗A,i to P ∗B,i is greater than the length of the vector VBC from P ∗B,i to P ∗C,i, and
it is labelled P ∗X1,i if ||VBC || > ||VAB ||. This provides more space for the fourth
of four points needed for the minimization routine (See Figure 10). This last
point is calculated to be some distance between the two with the largest gap–
the distance is determined such that the golden ratio applies to the resulting
line segments between the new point and its neighbors. Once P ∗X0,i, P

∗
X1,i,

P ∗X2,i and P ∗X3,i have been designated and their corresponding fieldlines have
been integrated, dX1,i, dX2,i are evaluated. The smaller of the two is nearer to
the minimum, which we’ve previously established lies between P ∗X0,i and P ∗X3,i.
Suppose the point with the smaller d was X2. Now we know more accurately
where the minimum lies, specifically that it lies between P ∗X1,i and P ∗X3,i, since
dX2,i < dX1,i from above, and dX2,i < dX3,i from the bracketing routine. If
dX2 ≤ δmax where δmax is our tolerance limit then X2 is also our minimum, and
if our tolerance was set correctly X2 lies on the rational surface. If dX2,i > δmax
then we now treat P ∗X1,i, P

∗
X2,i and P ∗X3,i as P ∗A,i, P

∗
B,N and P ∗C,i respectively

and repeat this paragraph. Each iteration resolves to a tighter bound on the
minimum and when one of the inner points is better than the tolerance, we take
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Figure 10: In this figure, the rational surface is shown with four minimization points, three of which
were the final bracketing points and the fourth was calculated to fill in the largest gap. Points shown
from left to right: P∗X0,i, P.

∗
X1,i, P

∗
X2,i, & P∗X3,i

that point and label it as ready to draw. However, it isn’t yet ready to draw
until all other seeds have completed their searches.

This entire process is repeated for each seed until the searches have all either
failed or succeeded and produced a point on the surface. The ordering of the
points is maintained throughout the process and the points are connected in
order when drawn, in their respective winding groups (i.e., the groups formed
from different windings of the collection of curves).

The ratio used when seeding new bracketing curves or minimizing curves is
that of the golden mean or golden section, allegedly from the ancient Greeks.
Each iteration of the technique refines the bounds on the minimum by a factor
of .61803 times the previous interval. This is on the order of, but not quite
as good as a factor of .50000 that is achieved from a bisection method. The
convergence is linear. This ratio was not chosen for its historical significance,
but rather it has been derived as the optimal segmenting ratio in order to avert
pitfalls of the bisection method [3, p 494].

4 Results & Discussion

The resultant puncture points form a smoother piecewise linear approximation
of the complete rational surface (Figure 11). The points lie on the rational
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Figure 11: Left: Typical piecewise linear approximation of a rational surface. The connected data
points are puncture points from a single fieldline. Right: The result after following the technique
described in this paper: four additional puncture points (and therefore fieldline seed points) on the
rational surface for every puncture point in the original.

surface to within either the chosen tolerance if possible, or to the limits imposed
by errors in integration. More points on the surface are known than when
looking at one rational fieldline, because by definition rational fieldlines do not
spread out. Thus, the introduction of additional fieldlines to fill in the gaps of
the original achieves the objective of visualizing a rational surface with a level
of detail comparable to that available from irrational surfaces afforded them by
their progressive behavior.

The algorithm described in this paper is robust, and the minimization routine
is guaranteed to converge on the minimum as long as it exists and the behavior
of the field is predictable, smooth and monotonic [3, p 492-496]. It is possible the
algorithm fails to select the correct rational surface for some of the points if there
is more than one minimum in close proximity, as the bracketing routine could
inadvertently bracket more than one minimum, and the minimization algorithm
could select any of them in the end. In this case, the resultant drawing is of
varying quality.

While low order surfaces are of primary interest, many of the surfaces used
as test data for this work, and indeed many of the sample results used as figures
in this paper are of higher order rational surfaces, which already give much
better piecewise approximations than do low order rational surfaces, such as a
2,1. This is partly due to a scarcity of low order rational surfaces in the test
data but also due to numerical errors related to precision since such surfaces
commonly have a diameter on the same order of magnitude as the limit of
precision. The low order rational surfaces tested for this project did not yield
good results due to precision issues. Nevertheless, the results on higher order

14



rational surfaces are very good and it would be reasonable for adjustments to
be made to accommodate the difficulties encountered with low order surfaces.

The minimization algorithm used is a common one, and does not converge
as rapidly as others. A number of such improved minimization routines are
described in later sections of [3]. Additionally, the implementation in VisIt
[2] does not leverage its parallel design and as such is strictly serial, and thus
not very fast. The implementation could be expanded to utilize this latent
power fairly easily, as minimization seeds only depend on other fieldlines in their
respective minimization groups, and each group could be numerically integrated
individually in parallel.

Figure 12: Two curves have
been identified as rational sur-
faces. The left curve is an 80,39,
the right is a 119,58.

Figure 13: The same two curves
but with an additional curve
in between, which has had its
winding numbers overridden to
match the lower order rational.

Figure 14: The result of ap-
plying the minimization routine
to the test seed from Figure
13: The minimization found the
lower order surface and added
more puncture points to the
plot.

4.1 Testing

As a qualitative test of the method’s robustness, new fieldlines are seeded near a
known rational surface and the result is compared with the expectation (i.e., the
seed should minimize to the rational). The further from the rational a seed is
planted which successfully minimizes to the rational, the better the robustness.
One limitation of this test is that the distance to the next rational surface limits
the range of testing input. This distance is determined by the local topology
of the field. Nevertheless, as long as each seed is chosen such that no other
rational surface lies closer to it (or that the first derivative of the field at that
point doesn’t slope away from the target rational), the method brackets the
target rational and minimizes to it. If the bracketing points are sloped towards
the target rational and don’t encompass any other critical surfaces, with enough
iterations the target rational will eventually be bracketed. A quantitative anal-
ysis of the robustness could be performed given a data set with a known lone
rational surface, defined as being more than twice as far from another rational
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surface than the bounds as defined in section 2.4. In Figure 12, two rational sur-
face profiles are shown. The left surface has a lower, and therefore more stable
winding number while the right surface has a slightly higher winding number.
A point between the two rational surfaces is chosen as a test seed (see Figure
13). Its analysis is overridden with the winding values of the nearby rational
to show the relative spacing of successive punctures in a winding group. The
algorithm in this paper is applied to this test seed, and the resulting curve is
shown drawn together with the original rational surface in Figure 14. Thus, the
method demonstrates robustness within the described testing limitations.

The accuracy of the approach described in section 3 ultimately depends
on the accuracy of a calculated fieldline for the factor used to determine its
overlap, or its distance in relation to a rational surface. The global error is
bounded linearly by a power of the integration step size h. With this in mind,
a test was designed and performed in order to describe the quality of the result
achieved as a factor of the integration step size. An initial seed is planted in
the same location near a known rational surface and the method described in
this paper is run for different integration step sizes. In order to control the test,
a hard coded number of seeds are generated along the arc between the same
two puncture points on the surface found with the original seed. In the results
presented here, 11 seed points are used. The control case is chosen as the test
with the smallest step size, so that comparing the various test cases against
the control gives a meaningful indication of the effect without requiring an
arbitrary level of precision. The error is calculated using the absolute distance
from each puncture point obtained with a given step size to its counterpart
in the control set (which uses a much smaller step size). In other words, the
further a point is from its counterpart calculated with a much lower step size,
the greater the error accumulated. This test was run at a number of step sizes
covering nearly two orders of magnitude. The range of the step sizes tested
was selected based on pre-existing knowledge about the error’s relationship to
the step size and to illustrate the growth pattern of the error. Additionally, it
becomes increasingly difficult to obtain results for step sizes beyond the range
used. It should be emphasized that the error is bounded by an expression which
grows linearly with the step size. This explains the wide range of errors obtained,
as some seeds continue to achieve better results than others, and it is evident
that this performance depends on the rank of the seed along the arc used for
their generation. In any case, the results (see Figure 15) show that the error,
acknowledging some noise, is indeed bounded linearly as described in section
2.4. In order to more clearly show the values obtained for very low step sizes, a
closer view of those results is shown in Figure 16.

An obstacle to both the robustness and accuracy tests, and the approach
in general, lies in encountering multiple rational surfaces in close proximity.
Additionally, a poor choice in integration step size results in a chaotic looking
rational surface as a result of increased local truncation error leading to increased
global truncation error. A solution to the first case will not be proposed here
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Figure 15: The effect of varying integration step size on the overall error.

Figure 16: The same data as in the first few columns of Figure 15, presented for clarity.
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beyond choosing seed points carefully together with the solution to the second
case, which is to verify the integration step size is chosen appropriately.

5 Conclusions

It has been demonstrated that additional data points on a given rational surface
in a toroidal magnetic field can be searched and found numerically. Rational
surfaces are of particular interest because it is from rational surfaces that island
chains form, and until now their very nature hindered their complete elucidation.
A working implementation has been deployed as a plugin for VisIt in C++ and
the source code is available publicly.

While this work demonstrates the value of a numerical minimization in the
context of toroidal vector field simulations, the minimization technique em-
ployed is a simple one that could be improved with, e.g., a parabolic interpo-
lation. Consequently the algorithm developed and implemented here makes no
claims of optimality. In any case, the viability of the technique has been demon-
strated. Future work, in addition to improvements to this work, might entail
tracking the rational surfaces through time, or its islands as they form.
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